Thermal Management of Multi-Core
Processor:
Cooling Analysis with Gyroid and SchwarzD
Structure Heat Sink

Meliksah Altuntas, Yunus Emre Demirel,
Daglar Duman, Abdulsamet Boyaci

Istanbul Bilgi University
Mechatronics Engineering Department

Fall 2025



Contents

(1.2 Objectives| . . . . . . . . . . e

2__Materials and Methodsl
2.1 System Parameters| . . . . . . . . ..o
[2.2  Material Properties| . . . . .. . ... oo

[3 Thermal Resistance Network Analysis|
[3.1 Single CPU Configuration . . . . . .. ... ... ... ... .. ......

[3.1.2  Gyroid Heat Sink - Single CPU} . . . . ... .. ... ... .. ...
[3.1.3  Schwarz-D Heat Sink - Single CPU| . . . . . . ... ... ... ...
[3.2 Two CPU Configuration| . . . . . .. ... ... ... .. ..........
B.2.1 Schwarz-D - Two CPUl . . . . ... ... ... .. ... .......
[3.2.2  Gyroid - Two CPU| . . . .. . ... ... o

4 T eat Sin esign

4.1 What are TPMS Structures?. . . . . .. ... ... oo
(4.1.1  Gyroid Structure] . . . . . ..o L

[4.1.2  Schwarz-D (Diamond) Structurel. . . . . . .. ... ... ... ...

[4.2  Design Parameters| . . . . . . . . . ... ... ..

[> Thermal Analysis Results]
[>.1 Two CPU Configuration Results|. . . . . . .. ... ... ... ... ....
[5.1.1  Gyroid - With Fan| . . . . . . ... ... ... ... 0L
[>.1.2  Gyroid - No Fan| . . . . .. ... .. ... ...
I;i,l,;i :isfll&!alz_D - M l‘lll Ialll .........................
bh.1.4 Schwarz-D - No Fan| . . . . . ... .. ... .. ... ... ...
[5.2  Single CPU Configuration Results| . . . . . . ... ... ... ... .. ...
[>.2.1  Gyroid - With Fan| . . . . . ... ..o
[5.2.2  Gyroid - No Fan| . . . . ... ... .. ...
I;i,2,;i :isfll&!ﬁlz_D - M l‘lll Ialll .........................

[>.3  Complete Results Comparison| . . . . . . . ... .. ... ... ... ....
[5.4  Key Observations| . . . . . . . . . . . . . .

[6 Cost Analysis|
6.1 Two CPU Configuration Costs|. . . . . . . . .. .. ... ... ... ....
6.2 Single CPU Configuration Costs| . . . . . . . . . .. .. ... ... .....
6.3 TIM Cost Analysis| . . . . . . . . .. .. ... .. ...

T onl

[7.3  Design Trade-offs| . . . . . . . . . .. ...
[7.4  Required Convection Coefficient| . . . . . . . . . . . . . .. .. ... ....




8.1 Future Workl. . . . . .. . . 20
9__References 20
[A Appendix A: Calculation Details| 20

[A.1 Thermal Resistance Formulag . . . . . .. .. ... ... ... ... .... 20

[A.2 Temperature Calculations| . . . . . .. ... ... ... ... ... .... 21
(B Appendix B: TPMS Mathematical Definitions| 21

B ) dl . . e e 21

B.2 Schwarz-D (Diamond)| . . . . . . .. ... ... ... ... 21
[C Appendix C: Material Selection Justification| 21

(C.1 Why Al5110Mg for Heat Sinks? . . . . . . ... ... ... ... ... ... 21

[C.2° Why Arctic MX-4 TIM?| . . . . .. ... ... ... ... .. ... ... 22
(D Appendix D: Detailed Hand Calculations - Two CPU Resistance Cor-
L__rected Versionl 22

[D.1 Thermal Resistance Network Diagram| . . . ... ... ... ... .. ... 22

[D.2 Methodology and Assumptions| . . . . ... ... ... ... ... ..... 22

[D.3 Given Parameters . . . . . . . . .. 23

[D.4 Step-by-Step Calculations| . . . . ... ... .. ... .. ... ... ... 23

D.4.1 Thermal Interface Material - CPU Sidel . . . . . . . . ... ... .. 23
[D.4.2 Copper Heat Spreader| . . . . . .. ... .. .. ... ... ..... 23
D.4.3 Thermal Interface Material - Heat Sink bidel . . . . . . . .. .. .. 23
(D44 Heat Sink Basel . . . . ... ... oo oo 24
D.4.5 Convection Resistancel . . . . . .. . ... .. ... ... ...... 24
[D.5 Temperature Analysis - Critical Path| . . . . .. ... ... ... ... ... 24
[D.5.1 STEP 1: Temperature Drop from Critical CPU to Copper Spreader| 24
[D.5.2 STEP 2: Temperature Drop from Copper to Heat Sink Surtace|. . . 25
[D.5.3 STEP 3: Required Heat Transter Coefficient| . . . . . . . ... . .. 25
[D.6 Conclusionl . . . . . . . . . 25



1 Introduction

This report presents a complete thermal analysis of multi-core processor cooling systems
using advanced heat sink designs. We focus on Triply Periodic Minimal Surface (TPMS)
structures, specifically Gyroid and Schwarz-D designs, for efficient heat removal.
Modern processors generate high heat loads that must be removed to prevent thermal
failure. The maximum junction temperature is typically limited to 85°C. Our study
compares different TPMS heat sink designs for both single and dual CPU configurations.

1.1 Problem Statement

We need to design a cooling system for:
e Two processors: CPU1 (20W) and CPU2 (15W)

e Fach processor area: 1 cm x 1 cm
e Maximum junction temperature: 85°C

e Ambient temperature: 35°C

1.2 Objectives

1. Calculate thermal resistance networks for different configurations
Design and compare TPMS heat sink structures
Run thermal simulations with and without forced cooling

Analyze costs for different designs

ARl R

Find the best cooling solution

2 Materials and Methods

2.1 System Parameters

Table [I] shows the main system parameters used in this study.

Table 1: System Parameters

Parameter Value
Processor 1 Power (P1) 20 W
Processor 2 Power (P2) 15 W
Processor Area 1 x 1 cm?
Maximum Junction Temperature 85°C
Ambient Temperature 35°C

TIM Thickness 100 pm
TIM Thermal Conductivity 10 W/m-K
Copper Conductivity 400 W/m-K
Aluminum Conductivity 177 W/m-K

Convection Coefficient Range 7-20,000 W/m?-K




2.2 Material Properties

Different materials are used in the cooling system. Table [2| lists their thermal properties.

Table 2: Material Properties

Material k [W/m-K] g [g/cm® cp [J/g-°C] Application

Silicon (Si) 150 2.328 0.678 CPU Die
TIM 56 7.850 0.480 Interface
Copper 400 8.940 0.385 Heat Spreader
Aluminum 177 2.700 0.896 Heat Sink

3 Thermal Resistance Network Analysis

3.1 Single CPU Configuration

For a single active CPU, heat flows through a series of thermal resistances from the

junction to ambient air.

R_chip R_TIM_CPU R_CopperR_TIM_HS R_HS R_fin,conv
T _/\/\V—/\/\/—A\/\/_/\/\\/_/\/\/—/\\/\/— T_ambient

Figure 1: Single CPU Thermal Resistance Network

The total resistance must be less than the maximum allowable value:

AT  85-35
Q 2

Roaw = =25 °C/W

3.1.1 Resistance Calculations

Each component contributes to the total thermal resistance:
Chip Resistance:

Lep; 0.5x 1073
Renip = P = =0.0333 °C/W
" Keonip - Acnip 150 x 104 /
TIM Resistance (CPU side):
L 10~
Rrivcopu = i =0.1°"C/W

kTIM . ATIM B 10 x 104
Copper Heat Spreader:

B B Lecopper B 3x 1073
PPL " eopper * Acopper 400 X (25 x 36 x 10-6)

= 0.00833 °C/W
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TIM Resistance (Heat Sink side):

L
Rrrvps = el = 0.011 °C/W
kriv - Arivms
Heat Sink Base: I
Rys = —25 = 0.044 °C/W
"5 kns - Aus /

Convection Resistance:

1 1

Rfin conv — -
7 hconv . Aconv h : Acom}

3.1.2 Gyroid Heat Sink - Single CPU
For the Gyroid design with surface area 15,452 mm?2:

62.5
Rfin,com} = T OC/W

62.5
Rtotal - 0197 + T

To meet the temperature limit:

62.5
2.5 =0.107 + == = h = 27.130 W/m’K

3.1.3 Schwarz-D Heat Sink - Single CPU

For the Schwarz-D design with surface area 19,072 mm?2:

52.63
Rfin,conv = n oC/Vv

2.
Rtotal = 0197 + 5_}163

Required convection coefficient:

h = 22.853 W/m2K

3.2 Two CPU Configuration

When both CPUs are active, they share the heat sink and convection path.

(10)

(11)

(12)

(13)



Figure 2: Two CPU Thermal Resistance Network - Two parallel branches (CPU1 and
CPU2) merge at common heat sink base, then share heat sink and convection resistance

to ambient

The thermal paths are:
CPU1 Path:
Rpaing = Rrrvg + Reouy + Rpipe

CPU2 Path:
Rpath,2 = RTIM,2 + RCu,Q + Rpipe,2

Common Path:
Rconv . R'rad

R = Ry + —comw” Trad
common HS T Rcom; T Rrad

Junction temperatures are:

,Tj,l = Too + Pl : Rpath,l + (Pl + P2) : Rcommon

7—_'1',2 = Too + P2 : Rpath,2 + (Pl + P2) : Rcommon

3.2.1 Schwarz-D - Two CPU

Maximum allowable resistance for 35W total:

=55 gy

Parallel chip resistances:

1 1 1
=——+—— = R, =0.0665 "C/W
Re, 0.133 MNER I /

Total resistance: 31.25
Riotar = 0.0926 + T

Required h:
h = 23.384 W/m?K



3.2.2 Gyroid - Two CPU

For Gyroid with larger surface area (29,229 mm?):

34.48
Rtotal - 00926 + T (23)
Required h:
h = 25.803 W/m?K (24)

Note: The detailed step-by-step thermal resistance calculations using nodal analysis
methodology for the two CPU configuration are presented in[Appendix D] which provides
the correct physical approach for heat flow analysis when multiple heat sources merge at
a common junction.

4 TPMS Heat Sink Design

4.1 What are TPMS Structures?

Triply Periodic Minimal Surfaces (TPMS) are special geometric shapes with:
e Zero mean curvature at every point
e High surface area to volume ratio
e Continuous air flow channels

e Can be made by 3D printing

4.1.1 Gyroid Structure
The Gyroid is defined by the equation:

(a) Single CPU configuration (b) Dual CPU configuration

Figure 3: Gyroid Heat Sink Structure



4.1.2 Schwarz-D (Diamond) Structure
The Schwarz-D is defined by:

(a) Single CPU (b) Dual CPU

Figure 4: Schwarz-D Heat Sink Structure

4.2 Design Parameters

Four different heat sink designs were created:

Table 3: TPMS Heat Sink Design Parameters

Design Surface Area Volume Mass A/V Ratio
[mm?] [mm?]  [kg]  [1/mm]

Gyroid 2 CPU 29,228.81 19,698.07  0.155 1.484

Gyroid 1 CPU 15,452.44 9,067.74 0.071 1.706

Schwarz-D 2 CPU 32,299.87 15,460.53 0.121 2.089
Schwarz-D 1 CPU 19,071.72 9,034.60 0.071 2.111

Key finding: Schwarz-D structures have higher surface area to volume ratios, which
means better heat transfer.

5 Thermal Analysis Results

All thermal simulations were done in Fusion 360 with:
e Heat sources: CPU1 = 20W, CPU2 = 15W
e Ambient temperature: 35°C
e Material: Aluminum AlSil0Mg

e Two cases: with fan and without fan



5.1 Two CPU Configuration Results
5.1.1 Gyroid - With Fan

Figure 5: Gyroid 2 CPU Thermal Analysis with Fan

Results:
e Maximum temperature: 76.37°C
e Minimum temperature: 35.00°C
e Temperature rise: 41.37°C

e Maximum air velocity: 12.23 m/s

Status: PASS (below 85°C limit)
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5.1.2 Gyroid - No Fan

Figure 6: Gyroid 2 CPU Thermal Analysis without Fan

Results:

e Maximum temperature: 191.82°C

e Minimum temperature: 35.00°C

e Temperature rise: 156.82°C

e Maximum air velocity: 0.28 m/s (natural convection)

e Status: FAIL (exceeds 85°C limit)

5.1.3 Schwarz-D - With Fan

Figure 7: Schwarz-D 2 CPU Thermal Analysis with Fan
Results:
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e Maximum temperature: 54.81°C

e Minimum temperature: 35.00°C

Temperature rise: 19.81°C

e Maximum air velocity: 19.15 m/s

Status: PASS (well below 85°C limit)

5.1.4 Schwarz-D - No Fan

Figure 8: Schwarz-D 2 CPU Thermal Analysis without Fan

Results:
e Maximum temperature: 199.00°C

e Minimum temperature: 35.00°C

Temperature rise: 164.00°C

e Maximum air velocity: 0.26 m/s (natural convection)

Status: FAIL (exceeds 85°C limit)

12



5.2 Single CPU Configuration Results
5.2.1 Gyroid - With Fan

SruYol-E-E- 5

Figure 9: Gyroid 1 CPU Thermal Analysis with Fan

Results:
e Maximum temperature: 47.27°C
e Temperature rise: 12.27°C

e Maximum air velocity: 20.20 m/s

e Status: PASS

13



5.2.2 Gyroid - No Fan
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Figure 10: Gyroid 1 CPU Thermal Analysis without Fan

Results:

Maximum temperature: 165.61°C
Temperature rise: 130.61°C
Maximum air velocity: 0.25 m/s

Status: FAIL

5.2.3 Schwarz-D - With Fan

£ Bilesen Sicaktdr (0

46629 Maks

b v My ot Oy B

Figure 11: Schwarz-D 1 CPU Thermal Analysis with Fan
Results:

14



e Maximum temperature: 46.63°C
e Temperature rise: 11.63°C
e Maximum air velocity: 24.03 m/s

e Status: PASS

5.2.4 Schwarz-D - No Fan

Figure 12: Schwarz-D 1 CPU Thermal Analysis without Fan

Results:
e Maximum temperature: 161.85°C
e Temperature rise: 136.85°C
e Maximum air velocity: 0.27 m/s

e Status: FAIL

15



5.3 Complete Results Comparison

Table 4: Thermal Analysis Results Summary

Design Cooling T max T_min AT Status

[°C] °Cl  [°C]
2 CPU Configuration (35W)
Gyroid Fan 76.37 35.00 41.37  PASS
Gyroid No Fan 191.82 35.00 156.82 FAIL
Schwarz-D  Fan 54.81 35.00 19.81  PASS

Schwarz-D No Fan 199.00 35.00 164.00 FAIL
1 CPU Configuration (20W)

Gyroid Fan 47.27 35.00 12.27  PASS
Gyroid No Fan 165.61  35.00 130.61 FAIL
Schwarz-D  Fan 46.63 35.00 11.63  PASS

Schwarz-D  No Fan 161.85  25.00 136.85 FAIL

5.4 Key Observations

1. Schwarz-D performs better than Gyroid in all cases (lower maximum temperatures)

2. Forced convection (fan) is absolutely necessary - all passive cooling tests failed

w

. Best performance: Schwarz-D 1 CPU with fan (T_max = 46.63°C)

4. Without a fan, even the best design reaches 161°C (dangerous level)

Figure 13: TPMS Heat Sink Summary - Comparison Charts

6 Cost Analysis

All heat sinks are manufactured using SLM (Selective Laser Melting) 3D printing with
AlSi10Mg aluminum alloy.

16



6.1 Two CPU Configuration Costs

Table 5: Cost Analysis - 2 CPU Configuration

Cost Component Gyroid [USD] Schwarz-D [USD]
Material (o_Al = 100 USD /kg) 15.50 12.10
Machine Time (75 USD/hr) 147.75 116.25
Post-Processing 60.00 60.00

Heat Sink Cost 223.25 188.35

Fan + TIM + Assembly 30.00 30.00
TOTAL 253.25 218.35
Schwarz-D Savings 34.90 USD (13.8%)

6.2 Single CPU Configuration Costs
Using a scaling factor of 0.583 from 2 CPU to 1 CPU designs:

Table 6: Cost Analysis - 1 CPU Configuration

Cost Component Gyroid [USD]| Schwarz-D [USD]
Material 9.04 7.05
Machine Time 86.14 67.77
Post-Processing 60.00 60.00

Heat Sink Cost 155.18 134.82

Fan 4+ TIM + Assembly 30.00 30.00
TOTAL 185.18 164.82
Schwarz-D Savings 20.36 USD (11.0%)

6.3 TIM Cost Analysis

We selected Arctic MX-4 thermal interface material:

Table 7: Arctic MX-4 TIM Properties

Property Value

Thermal Conductivity 8.5 W/mK
Density 2.50 g/cm?
Price (4g tube) $5.50 USD

Recommended Thickness 0.05 - 0.1 mm

TIM Volume Calculation (2 CPU):
e CPU side: 2 x (10 x 10) x 0.1 = 20 mm?
e Heat sink side: (60 x 36) x 0.1 = 216 mm?

17



e Total volume: 236 mm? = 0.236 cm?

TIM Cost:
0.59

Table 8: TIM Cost Summary

Configuration TIM Area [mm?®] TIM Mass [g] Cost [USD]

2 CPU 2,360 0.59 0.81
1 CPU 1,000 0.25 0.34

Note: One 4g tube of Arctic MX-4 is enough for about 6-7 applications (2 CPU) or
16 applications (1 CPU).

7 Discussion

7.1 Thermal Performance
Our analysis clearly shows that:

1. Schwarz-D is better than Gyroid: In every test, Schwarz-D achieved lower
maximum temperatures. For the 2 CPU case with fan, Schwarz-D reached only
54.81°C while Gyroid reached 76.37°C - a difference of 21.56°C.

2. A fan is absolutely necessary: Without forced cooling, all designs failed. Even
the best design (Schwarz-D 1 CPU) reached 161.85°C without a fan, far above the
85°C limit.

3. Higher surface area helps: Schwarz-D has an A/V ratio of 2.089-2.111, compared
to Gyroid’s 1.484-1.706. This means more surface area for the same volume, leading
to better heat transfer.

4. Air velocity matters: With a fan, air velocities reached 19-24 m/s. Without a
fan, natural convection only produced 0.25-0.28 m/s - almost 100 times slower.

7.2 Cost Effectiveness

Schwarz-D is not only better thermally but also cheaper:
e 2 CPU: Saves $34.90 (13.8%)
e 1 CPU: Saves $20.36 (11.0%)

The lower cost comes from:

e Less material needed (lighter design)
e Less printing time (simpler geometry)

e Same post-processing cost

18



7.3 Design Trade-offs

While Schwarz-D performs better, we should consider:
1. Structural strength: Gyroid might be stronger due to its curved surfaces
2. Print reliability: Schwarz-D’s diamond pattern might be easier to print

3. Air flow resistance: Both designs allow good air flow, but Schwarz-D channels
are more direct

4. Cleaning: Both structures have complex internal channels that are hard to clean

7.4 Required Convection Coefficient

From our calculations, minimum required h values are:

Table 9: Minimum Required Convection Coefficients

Configuration Gyroid h.min Schwarz-D h_min

1 CPU (20W)  27.139 W/m2K  22.853 W/m2K
2 CPU (35W) 25803 W/m2K  23.384 W/m2K

All these values are easily achievable with a small cooling fan. Natural convection
provides only about 5-10 W/m?K, which is not enough.

8 Conclusions
Based on our complete thermal and cost analysis, we conclude:

1. Best Design: Schwarz-D with forced cooling
e Lowest temperatures (46.63°C for 1 CPU, 54.81°C for 2 CPU)

e Lower cost than Gyroid
e Good safety margin (30-40°C below limit)

2. Forced cooling is mandatory

e Natural convection cannot handle the heat load
e All passive designs exceeded 160°C

e A small fan makes a huge difference
3. TPMS structures are effective

e High surface area enables good heat transfer
e 3D printing allows complex geometries

e Lighter than traditional finned heat sinks

4. Design recommendations
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8.1

Use Schwarz-D for best performance and cost
Install at least a 25 W/m?K cooling fan
Apply TIM correctly (0.1 mm thickness)

Consider Gyroid only if structural strength is critical

Future Work

To improve this study further, we suggest:

1.

A

Test other TPMS structures (Primitive, [-WP)

Optimize cell size and wall thickness

. Test with different materials (copper, graphene-enhanced aluminum)

. Build and test physical prototypes

Study long-term reliability and thermal cycling

. Analyze noise levels from different fan speeds

Investigate hybrid designs (combining multiple TPMS)
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Appendix A: Calculation Details

A.1 Thermal Resistance Formulas

General conduction resistance:

L
- 2
Rcond L. A ( 7)
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General convection resistance:

1

Rconv = 7 28
A (28)
Series resistances:
Rtotal - Rl + RQ "— Rg "— + Rn (29)
Parallel resistances:
L _ ! + L + ...+ ! (30)
Rtotal Rl R2 Rn
A.2 Temperature Calculations
For single heat source:
T‘j - TOO + Q ) Rtotal (31)
For multiple heat sources:
T’j,i = Too + Qz : Rpath,i + Qtotal : Rcommon (32)

B Appendix B: TPMS Mathematical Definitions

B.1 Gyroid

Implicit equation:
sin(27rx/a) cos(2my/a) + sin(2my/a) cos(2nz/a) + sin(27z/a) cos(2mx/a) =t (33)

where a is the cell size and ¢ is the threshold value (typically 0).

B.2 Schwarz-D (Diamond)

Implicit equation:

cos(2mzx/a) cos(2my/a) cos(2mz/a) — sin(2mx /a) sin(2ry/a) sin(27z/a) =t (34)

C Appendix C: Material Selection Justification

C.1 Why AlSi10Mg for Heat Sinks?
Good thermal conductivity (177 W/mK)

Lightweight (2.7 g/cm?)

Excellent for SLM 3D printing
e Lower cost than copper

Good corrosion resistance
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C.2 Why Arctic MX-4 TIM?
High thermal conductivity (8.5 W/mK)

Non-conductive (electrically safe)

Long lifespan (8+ years)

e No curing or burn-in time

Easy to apply

Good price/performance ratio

D Appendix D: Detailed Hand Calculations - Two
CPU Resistance Corrected Version

This appendix presents the complete hand calculations for the two CPU configuration
thermal analysis, showing the step-by-step methodology used to determine the required
convection coefficient.

D.1 Thermal Resistance Network Diagram

Rxip,cpu
i wﬂmm Rug R, cons
Q "l = .
M, Teurl tmp,
S - O o

Figure 14: Two CPU Thermal Resistance Network - Hand Calculation Methodology

D.2 Methodology and Assumptions

Before the calculation, the engineering approach is defined as follows:

1. Nodal Analysis: Since two CPUs are independent heat sources (Q; = 20W,
Q2 = 15W), we calculate the temperature drop based on the physical junction of
heat fluxes rather than using an electrical parallel equivalent resistance.

2. Worst-case Design: The design is based on the hotter component, CPU 1 (20W),
ensuring it does not exceed the limit of 85°C.

3. Neglecting R.;,: Since no data for the chip was provided in the project brief
and Repip, < Rrry, the analysis starts from the junction-to-case (TIM interface)
boundary.

4. Neglecting Radiation: Radiation effects are assumed to be negligible due to
forced convection.

Note: The diagram above represents the correct physical model where heat fluxes
start independently and merge at the copper spreader.
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D.3 Given Parameters

Q1 =20, Q2 =15W, Qota = Q1+ Q2 =35W
Tjj,max = 8507 Tamb = 35C

D.4 Step-by-Step Calculations
D.4.1 Thermal Interface Material - CPU Side

R I Lrim
TIM,CPU =
’ kriv - Arivcpu
Given:
o Ly =0.1x 1073 m
® kTIM =10 W/(mK)
o Ariycopy = 107% m?
1074 10~ C
R = = =0.1—
TIM,C PU (10m_m/f'(>(10_4m2) 10 % 1074
D.4.2 Copper Heat Spreader
L
Rco er — opPe
P kcopper : Acopper
Given:
® Leopper = 3 X 1072 m
® Keopper = 400 W/(m-K)
o Acopper = 60 x 36 X 1076 m?
3x 1073 C
Rco er — = 0.00347—
PP (400-22) (60 x 36 x 10-6m?) W

C
Reopper = 0.00347 —
PP W

D.4.3 Thermal Interface Material - Heat Sink Side

Ly

R —
TIMAS kriave - Arivms
Given:

o Loy =0.1x 1073 m

L4 kTIM =10 W/(mK)

° ATIM,HS =60 x 36 x 1076 m?

23
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. B 10" — 0.0046%
TIM,HS = (10%)(60 X 36 X 10*6m2) - Y 44

C
Rriyms = 0.0046

D.4.4 Heat Sink Base

Lus
fins = kus - Ars
Given:
o Lys—7x10"%m
o kys = 177 W/(m-K)
o Apg =60 x 36 x 107¢ m?
% 103
Ras = (177%)((750 xlge’ X 10-6m2) 0'0183%

C
Rpys = 0.0183W

D.4.5 Convection Resistance
1
R in,conv — 7 a4
fin hconv : Aconv
For Gyroid:

® Aconv.Gyroid = 0.029m? (from Table [3)

. ) ] 3448
fin,conv,Gyroid — hconv(0.029m2) B hcon’v

For Schwarz-D:

b AconU,Schwarz = 0032m2

1 3125
Peony(0.032m2)  heony

Rfin,conv,Schwarz =

D.5 Temperature Analysis - Critical Path

(40)

(41)

(42)

(44)

(45)

D.5.1 STEP 1: Temperature Drop from Critical CPU to Copper Spreader

Starting from critical junction (85°C). Only 20W flows through this specific interface:

C
Teopper = Tj1 — (Q1 X Rrivopu) = 85C — (20 x 0.1W)

Tcopper = 83C

24
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D.5.2 STEP 2: Temperature Drop from Copper to Heat Sink Surface

Here, heat fluxes merge. The total power is 35W:

Tsurface = Tcoppe'r - (Qtotal X [Rcopper + RT]M,HS + RHS]) (48)
C

Turfoce = 83C — (35 x [0.00347 +0.0046 + 0.0183] ) (49)

Tyur face = 83C — 0.924C (50)

Tour face = 82.076C (51)

D.5.3 STEP 3: Required Heat Transfer Coefficient

We must dissipate 35W to the ambient air (35°C) using the remaining temperature budget:

AT onw = Tsur face — Tamp = 82.076C — 35C = 47.076C (52)
ATeony,  47.076C C
Required convection resistance: Reony req = O = = 1'345W (53)
For Gyroid:
34.48 34.48 W
; =——=13 = —— =25.64 4
Rpincono = = 5= h= g T BMTR (54)
w
hGy’r‘oid,min = 2564m2 K (55)
For Schwarz-D:
31.25 31.25 w
; =——=134 h=——=232
Rtin conv . 345 = 1345 3 3m2 e (56)
W
h chwarz,min — 23.23—— 57
Schwarz, m2 - K (57)

D.6 Conclusion

Minimum heat transfer coefficients required to keep the critical CPU below
85°C under full load:

e Gyroid: 25.64 W/m?K

e Schwarz-D: 23.23 W/m? K
Note: The calculation for Gyroid is shown in detail. For Schwarz-D, only A.,., changes

(32,300 mm? vs 29,229 mm? for Gyroid), which results in a slightly lower required con-
vection coefficient due to the larger surface area.
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